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ABSTRACT

-we-considersithe motion of a mixture of two fluids, with a diffusion

effect obeying Fick's laws for the derivation of the model (1.1) see Section I

and references [2], [4],[5] and [6]. Wetconsider-:,the full non-linear problem

2
(i.e., we don't omit the term A term in equation (1.11). Moreover, we

denw!t- assume that 7 is small. We provedthe existence of a (unique) local

solution, the existence of a global solution for small data, and the

exponential decay to the equilibrium solutions see Theorem A, Section 1.
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SIGNIFICANCE AND EXPLANATION

In this paper we consider the motion of a continuous medium consisting of

two components, say water and a dissolved salt, with a diffusion effect

obeying Fick's law. We denote by vw,pw,PAX the mean-volume velocity, mean-

mass velocity, density, pressure, viscosity and di ffusion constant,

respectively. By using Fick's law we eliminate w from the equations and we

obtain (1.1), where p is the modified pressurel see Section I and references

(2], [4],[5] and [6]. The initial boundary conditions are given by equation

(1.2).

Kazhikhov and Smagulov [5], 16) consider equation ( . 1.) for a small

diffusion coefficient X. More precisely, they assume that condition (1.3)

holds, moreover, they omit the A2 term in equation (I.I)i1 Under these

conditions they prove the existence of a unique local solution for the

3-dimensional motion (in the bi-dimensional case, solutions are global).

In our paper we consider the full equation (1.1), without assumption

(1.3), and we prove: (i) the existence of a (unique) local solution; (ii) the

existence of a global solution in time for small initial velocities and

external forces, and for initial densities near-constanti (iii) the

exponential decay (when t + +-) of the solution (p,v) to the equilibrium

solution (p,0), if f B 0. See Theorem A, Section 1.

The responsibility for the wording and views expressed in this descriptive
summary lies with NBC, and not with the author of this report.

..-.-- .-..---.-



DIFFUSION ON VISCOUS FLUIDS, EXISTZNCE
AND ASYMPTOTIC PROPERTIES OF SOLUTIONS

H. Beirao-da-Veiga*

Main Notation

: an open bounded set in R3 , locally situated on one side of its

boundary r, a regular (say C
4
) manifold.

n n:x) unit outward normal to r.

Dif Dii. Dt : a/3ax 1 , 32 /ax axl Va3/t.

2
I I,( , ) norm and scalar product in L M

(
).

Sobolev space k,2 (0) with norm

k 10la1 k- li IDnl
2

where

IDo2 IDaal 2 ,

Further,

i Iol - IDa12 .

IaIIa Is

H0  S Closure of C () in H MD).
0 a

Smnorm In L7(0).

L
2
, Sk, I Hilbert spaces of vectors v = (V 1 ,V 2 ,V 3 ) such that

v e L2 ,v e h ,vI e H' (I1,2,3), respectively. Corresponding

notation is used for other spaces of vector fields. Norms are defined

In the natural way, and denoted by the symbols used for the scalar

fields.

Let us Introduce the following functional spaces (see, for instance, [7], (8] and

(12] for their properties) -

*Department of mathematics, University of Trento, 38050 Povo (Trento) Italy.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



k - { 
k  Do

(a E H 0 on r and f o(x)dx - 0 } , k ) 2

V 3 ( v e C (D)) div v - o in Al,

2
a - v e L : div v - 0 in 0, v-n - 0 on r},

Ivv yea : div v - 0 on C}.

8 and V are the closure of v in L () and H* respectively. Moreover
0

2
L- + G, where G { Vp : p e H (0)}. Denoting by P the orthogonal projection of

L2 
onto E, we define the operator A S -PA on D(A) E 2nv. One has

(Au,v) - ((u,v)) E (D U
j 'D iv )

, V u e D(A), v e v.

The norms 1012, MlOI are equivalent in %
1

0
1 
l3' IV6o are equivalent in

and lv12 , lAvi are equivalent in D(A). We define IvI2 ((v,v)); the norms
% 2' V

IVlv, lvi I are equivalent in V.

L 2(0,TiX) : Banach space of strongly measurable functions defined in ]0,T[

with values in (a Banach space) X, for which

112 = Ez(t)l dt < +.
L (0,TiX) 0

C(O,T;X) t Banach space of X-vector valued continuous functions on (0,T]

endowed with the usual norm I0CCO Til )

% viscosity (a positive constant).

: diffusion coefficient (a positive constant).

v(t,x), v(x) : mean-volume velocity. Initial mean-volume velocity.

p(tx), 0 (x) density of the mixture. Initial density.0

Further,

m 2 inf0 (x) , M - sup Po(x),
xel) xe 0

-I- f P(.)d..

We assume that m > 0.

w(tx), p(t,x) pressure. Modified pressure

p - - + A v "VP - X2AO + X(2u+p')A log P.

f(t,x) external mass-force.

-2-



We denote by c, ;, Cop C1 , C2 , . positive constant, depending at most on 0 and

on the parameters 1A, X, m, M and ;. It is easy to derive at any stage of the proofs,

the explicit dependence of the constants on the parameters.

For convenience we sometimes denote different constants by the same symbol c.

Otherwise, we utilise the symbols c, c.k, k e x.

1. main results. In this paper we consider the motion of a viscous fluid consisting of

two components, say, saturated salt water and water. The equation. of the model are

obtained, for example, in (2), (4), (5), and (6]. Let us give a brief sketch. Let

01 P 2 be the characteristic densities (constants) of the two components, v (C t,x) and

v (2) (t,x) their velocities, and ef t,x), dit,x) the mass and volume concentration of the

first fluid. we define the density p(t,x) Sdo + 01-d) P 'and the mean-volume and

(1) (2) - (1) (2)
mean-mass velocities v Ed v + 01-d) v ,w 2e v + (1-e)v . Then the

equations of motion are

P tw+ (w-V)w f) -j~ - ul+tO') div w - -Vw

Sdiv v- 0,

O tP + div (pw) =0

On the other hand, Fick's diffusion law (see (21) gives w - v AP Ip VP. 13Y

elimination of w in the preceeding equations one gets, after some calculations,

Sp(D tV + (v*V)v) - Ay - X I(vV)vp + (Vp.v)vl +

(1.1)+ 12((Vp*V)Vp -- (Vp.Vp)Vp + ApVP] -- Vp + pf,

Dt P + vVP- Xtip 0

div v - 0

We want to solve system (0.1) in ]S 0,T[ x fi. Here p is the modified

pressure. We add to system (1.1) the following Initial boundary-value conditions.

-3-



0 on ]0,T( x r,

J " 0 on ]0,T( x r,
3n

(1.2) v - vo(X) in 11,

Pt-0 " po (x) in 0i

The first two conditions mean that there is no flux through the boundary.

In (5), (6) Kazhikhov and Smagulov consider the simplified system obtained from (1.1)

by omitting the term containing X21 moreover, they assume that

(1.3) X C
K-m

Under theme conditions Kashikhov and Smagulov state the existence of a local solution

in time (global in the bidimensional case).

In our paper we take into account the full equation (1.1), and omit the condition

(1.3). For this more general case we prove: (i) the existence of a (unique) local

solution for arbitrary initial data and external face fieldi (ii) the existence of a

unique global strong solution, for small initial data and external force field. Moreover,

if f F 0, the solution (P,v) decays exponentially to the equilibrium solution

(0,0). More precisely we prove the following result:

Theorem A. Let v e V,po - 2, f e L 2(0,T; L 2). Then there exists

TIe 10,T]

such that problem (1.1), (1.2) is uniquely solveable in M " oreover

2 2 2 12 3 2
v e L (0,T1 , H

2
) 8 C (0,T1 ; V), D v e L (0,TI 5), 0-0 e L (0,TIH N ) rn C (0,T 1 , HH).

L2 (0T1
P L 2 (0,TII ) and m 4 P(t,x) 4 M.

Moreover, there exist positive constants k1, k2 , and k 3 depending at most on

, , and on the mean density p such that that if

(1.4) Iv I + 100-PI2 4 kl

(1) Or, equivalently, depending on the total amount of mass 101 f - 0 p(x)dx.

-4-



and

(1.5) Ifl ( + L 2 k2 P

then the solution is alobal in time. If f E 0, the solution (p,v) decays

exponentially to the eaullibrium solution (,0), 1.e.
k 3 t

(1.6) v(t)1I + Ip(t)-pl2 4 (IV II+IPo-Pl2 ) a

for every t ) 0.

Theorem A als holds for coefficients u,X regularly dependent on p, v, provided

they are strictly positive and bounded, in a neighborhood of the range of values of the

initial data P (x), V(X). This generalization can be done without any difficulty.

Moreover, with standard techniques, one can prove that the solutions have more regularity

(up to C") If the data are sufficiently regular and the usual compatibility conditions

hold.

Local existence in the general case (i.e. with the A
2
term and without (1.3)) was

proved in the inviscid case by Beirao-da-Veiga, Serapioni and Valli In 1l]. a similar

result, in the viscous case and for 2 - R3 , was proved by Secchi [11]. For another

approach (concerning Greffi's model) see 110].

2. The linearized equations. We start by proving the following theoremTheorem 2. 1 Let

p(t,x) be a measurable function verifying

(2.1) 0 < m 4 P(tx) C N , a.e., in OT' Lot F e L 2(0,TIN) and v ae V.

Then there exists a (unigue) strong solution v of problem

P 0 - P v - -Vp + F in

(2.2) Jdiv v 0 in QT'

v - 0 on ]0,Tix r,

oL vt - VoX) in Q.

Moreove v e L2 (0,TPD(A))nC(0,TV), Dtv e L 2(0,TtE) and

(2.3) *,v2, + m e
2  

+
C(,TV) L20,TIH)

+ -u2 'Xv122 |oV 2 +a,2

41 L (0,TiH) 2m L2 (0,TH)

-5-



Proof. Let us write equation (2.2) in the equivalent form(2.4)

P(Potv) + v - v , vt 0 - V oX)

For brevity let us put

X - {v: V Ee 2 (0,TD(A)), v' M2 (0,Ti ) }

From well known results (see 19], Vol I, Chapter I : Theorem 3.1 with y - H, X -

D(A), j - 01 and (2.42) Proposition 2.1) it follows that X 4C (0,Ti V).

We start by proving the a priori bound (2.3)1 an essential device is to Introduce a

parameter r in order to conveniently balance the estimates. In R take the inner0

product of (2.4) with Dtv + C A v, o > 0. Since (v', Av) - 2 - 1 D lvi2 one gets
o o t V

IDtvl2 + Ivl + 2 2
(2.5) t i 7t, V o

4 IFI IDtvi + 0lFI IAvI + Eo IDt v IAvi

By using the inequalities II IDtvI 4- 1m ID tv2 + M
- 1 

IFI
2
, IF IAvI

4 4-1 U Al
2 

+ i i12 and IDt vIlAvi 4 (4M)-1i IAvi
2 

+ 0-I M ID tv2 one gets
3 tvt t

3 ID V1 2 + l vi 4 + tjIAV, 2
(2.6) t 2dt V 02

22: E0 M2  
2

(1 + -o) 372 F1 o IDvi
m U U t

Now fix c - (4M ) M and integrate equation (2.6) on (0,T). This gives the a
0

priori bound (2.3).

Define IvI 2 "left hand side of equation (2.3)", V R L 2(0,T,3) x V, and

I(F,V0)IV "right hand side of (2.3)'.

We solve (2.4) by the continuity method. Define 0 S (1-a) ; + ap, a e 0,1].

Clearly Pa verifies condition (2.1), for any a. Define Ta  (1-o)T + aT, where

Tv- (PDv) -MAv, V t-0) e V,

TV F (P(PDtv) -IjAv, v t-0) e V.

It-0

. .... ,-6-



Finally denote by y the set of values a e (0,1] for which problem (2.2) is solvable

in X for every pair (F,v ) e Y. Clearly o e Y, because for this value of the

parameter equation (2.6) because the linearized Navier-Stokes equation. Let us verify

that Y is open and closed.

y is open. Let a e y and denote by G(F,v ) v the solution v of problem
0 0

T v - (Wv o). From (2.3) one gets G e L(VX) (2 ) with IGI ( 1.To s . quation
0

Ta +C v - (Fv o ) can be written in the form
0

(2.7) [1-C G(i-T)lv - G(F,v ).

Since IG(T-T)I ( IT-TI Y, equation (2.7) is solvable for jel ( IT-T1XIy (by a

Neuman expansion).

y is closed. et a ey, aM + ao , and let V be the solution of

T v - (,vo). From (2.3) one has Inv 1 I(F,v )I Since X is an Hilbert space
OLn 0 n X o Vn

there exists a subsequence v V + v e X, weakly in X. From T, T e L(XCY) one has

Tv + Tv, Tv, + Tv weakly in V. Hence T v + T v, i.e. T v = (F,v ).T a a a o

V 0 0
Let ti now return to problem (1.1). Define

(2.8) F(pv) S P (-P(v.V)v + X [(v.V)Vp + (VO.V)v] +
A2

+ A [(Vp.V)p- I (vP.vP)VP + APP] + Pf)
P P

For convenience we will use in the sequel the translation

(2.9) P - p + a.

Recall that P is a given constant. To solve problem (1.1) and (1.2) in our

functional framework is equivalent to finding v e L 2(0,TD(A)), vi e L 2(0,TU) and

2 3~) 'eL
2  1

0 e L (0,T; %), a' e L2(0,Tt H such that

POD tv)-PAv = F(p,v),

(2.10) 1vit-0 v 0oW,

Dt a -XVo - -v.VO,
it=O v OoX),

a t-0 'o W x,

C2) Banach space of linear continuous operator from V into X, with norm I I

-7-



2where v e V and 0(x) -p • (fl), are given. Note that from the above conditions on

0 it follows that 0 e C(0,T, H 2
N

We solve (2.10) by considering the linearized problem

(1P(PDtv)-PAv - (Pp,v) -,

(v-t - v -x),

Dt a - A - -v.Vw.

t0 o(X),

and by proving the existence of a fixed point (p,;) - (pv) for the map (pv) * (Pv)

dfined by (2.11).

In order to get a sufficiently strong estimate for the linearized equation (2.11)3 we

take in account the particulkr form of the date v-Vo. As for estimate (2.3) we will

introduce a balance parameter E > 0.

Theorem 2.2 Assume that v e L2 (0,T,32 ) nC0,TE ) and that

- 2 3 2 2 3 20 e L (0,T;%)flC(O,T;H). Then the solution dCL (OT;H ), 0' e L (0,TIH ) of

problem (2.11)3' (2.11)4 verifies the estimate

(2.12) 101 2 2 +101 2 (C(0,T; % ) L2 (0T;

C Co't + C:£-3T[,;,6  + 17,01
2 2 C(O,t1H ) C(0,TpH

+ C3  [ 2 2 + 2 ' 2  
2]'

L (0,TIH
2
) L (O,TIH

for every positive C verifying

(2.13) C -2c I

where c1  in the constant in (2.16). Here c, c2, c3 are positive constants depending

only on a.

Proof. The existence of a solution 0 in the required space follows with standard

techniques from the a priori bound (2.12), or from [9], Volume II, Chapter 4, Theorem 5.2,

with H- H . Let us prove (2.12):

-8-



By application of the operator A to both sides of (2.11)3, by multiplication by

AO, and by integration over 2 one gets I/2Dt IACI2 + (V()AO-vVO), VAO) - 0. Hence

(2.14) 1 d 14ol 2 + XIVAOI2 4
2 dt

4 (nDvDn + IvDa2 ) nVAo

By using Sobolev's embeding theorem H1 C L6 and H;lder's inequality it follows that

(2.15) _ _ IA012+ )XlVAoI 2 
4

2 dt

. C(uI vl*1/2nD-ll/2 u7n1 +
1Vi' 1

I ~ a I ~o-3 4~i ,, 2 1/),41.

An utilization of abc 4 (SC 3)a4 + (e/2) b2 + (c/2) c 4, > 0, leads to

(2.16) _ I I12 + ),lVAo12 ( c ElDvI +
2coldol 1;1

(2.16) 112 +t DO 1V01 + - 11 ,

1 4 2

" C 1  clZo,
2  + c1 1V 1 2 11 4C3 1 1

Hence for c verifying (2.13) one has

(2.1_) sAeem 2 + A Ire 2  __2 - 2 -4
(21)dt C3(lVI I IVal1+

v a l I) + c9 C (l~vE + *IVt )

where the constants c depend only on . This proves inequality (2.12). Recall that

10%2 CcIdOl, lal 3 -C clVdOl

1Peuark. One could also consider the linearized equation D~ 0 + ;.Va - ).do - 0 instead

of (2.11) 31 then estimate (2.17) holds with a replaced by a and without the term

-2
c9o Evioe . In this case the solution a of the linearized problem verifies the maximum

principle (which doesn't hold for the solution of (2.11)3). However, the linearization

(2.11) 3 seems to be more in kceeping with the linearization (2.11)1. Besides, the maximum

principle will be recovered for the solution of the full nonlinear problem (2.10) 3.

3. The nonlinear problem. Local existence. We will not take care of the explicit

dependence on U,X,f,Mi some of the constants clck, depend on these fixed quantities. In

order to simplify the equations, we denote by Ro K1, K 2 1..., constants depending on the

norms of the Initial data Iv IV and to I

-9-



In this section we solve (2.10) by proving the existence of a fixed point

(P,v) - (P,V) for system (2.11). Define

KI -- N :Vt0 - Vo(X), 1l
2  

+
K1 t0 ' o (X,112 2+

L (0,TU )

2 2 2+ lvi2(0,TiV )  * Vm2 2 C4 IVolv I

2 2V

K2 (a :aIt-0 o 0(x), 3 2 3 + -1C(0,TIH2
L (0TH N N2 c o1t0  -2 oX, ,tal(0l,. 4 K ; oT. 2

2c 2  0 2  L
2 
(0,T;H

1
) 0

0
C( T) 2

where C U[min {u,M,(m
2
)/(4M

2
)}

- 1  
and K 10 1a m + C (4cc. IV Io, 1

4 0 2 o 2 2 4 o V o 2

Here c - c(Q) is a positive constant such that
_- - - B2

(3.1) IV.;I 1 c lv IWI , V v e v. ; e H

Note that for every a e K2  one has in QT

m -m
(3.2) 2 2(t,x) 4 M + 2

22- 2

We now evaluate the L norm of F S F(p,v). By using Sobolev's embeding theorem

H 4 L and older's inequality one easily gets
-- 2-2 2

(3.3) C(C) 1 DI ,, + C lV, 1 ID a •

2- + - - - 2 +
*ID2all + C Iyra DvI I mDOl +

- 3 2-6
+ IDOI ID01 + C IDOI1 +

+ C IfI2

Consequently,

-- 2 7/2 1/2
(3.4) IF(0,v)1L 2  (, C (Vol+ o +101)/2 T

L (0,TiU)

+ C 10 *6 T + C I£I2
L 2(0,T;H)

Hence, by using (2.3), it follows that the solution v of (2.11)I, (2.11)2 verifies

-10-



(3.5) Iv1 2 IvI 2. + V,[
2(0,T;R

2  
L 2(0T L

2 )

C IV 1 2 + K (/ + T) + C If1
2

4 0oV I1 2 O M

On the other hand, from (2.12),

(3.6) 101 2 2 + a

Q 12 2~l + K3 C-3 T + %4 E}2 2 023

Now we fix E > 0 such that K4 e 4 2
- 1 

C2 1oI 1 Finally, by fixing a

sufficiently small T > 0, it follows that v e K, a e K2 . The estimate for Dt a

follows by using equation (2.11)3 and (3.1). The estimate for the sup norm of

a in T is proved as follows:

da K 0() 1/2 01Clearly, ta~t) - a0 1I 1 do<K0TO-h ohrhn 0t

01 t~io() T1 / 2  On the other hand IU(t)--Cf)

Cery 23(t)- o o 23 C(5)
01 ,o(t)-a 12  , where C5 depends only on Q; recall that

5/3 -
H (i) C.C(f). Consequently

I0-Ooc T C 
1/3  

T
1/6  

C6  1l 2 +102
2/ 3

IQ -at I C K 11T6 (6 /2C- IQ I +. IV I )/
0 -~i 5o 6 2 0 2 02

2
where C6 - C 6 (0) is a positive constant, such that 1o )< C6 101 2 Va e HN(Q).

Hence, by choosing (if necessary) a smaller value for T, one gets IQ - 0 I f m/2
SCW)

Now we utilize Shauder's fixed point theorem. Clearly K SK 1 + -2  is a convex,

2 2 2 2
compact set in L (0,TL ) x L (0,T;L2). Let us denote by * the map *(P,v) - (P,v),

defined by (2.11). Since 0 (K) C X, it is sufficient to prove that 0 : K + K is

S- L2(Q - - 2
continuous in the topology. If v + v in L T), On + 0 in Is follows by

- - 2 2 1 2
compactness arguments that v n v weakly in L (0,T,3 ) and in H (0,TIL ), and that

n

VP n VP weakly in L (0,TiH ) and in H (0,TiL2). In particular P is a bounded
n 1/2 +1 2-2

sequence in H (0,TIH 2) (T) , for suitable positive EI, E2, a.

3 ) Q-Holder continuous functions in QT

-11-



Hence p v p uniformly in Q T Moreover, v and Vp are bounded in H 2 (0,T,1 )E andTn n
n 1/2 (,H1

)  
- --

in H/2 (OTH ) respectively. Hence v n  v and Vp n Vp strongly in the 
4

topology. It follows from (2.8) at F(P , v) * F(pv) as a distribution In QT
n

consequently F(Pn, v n F(Pv) weakly in L (QT), because F(P,v n ) is a bounded

sequence in this space. Analogously, v n  Vpn + v * Vp strongly in L (QT). It follows

from the linear equations (2.11) that v n v and p * p in L 2(QT) end L2(QT),

respectively. Hence * is continuous. This finishes the proof of the existence of a

local solution. Uniqueness will be proved in Section 5.

4. Global solutions. Asymptotic behavior.

In this section the constants CK  depend at most on 0 and on the quantities

P, A and p. i.e. on the total amount of mass 101 p. We assume that

(4.1) 10 12 (2) - 1 p,

hence p/2 4 m • H 4 3 0/2. Let (p,v) be a solution of (1.1). From (2.6) for

c - (4M2) -m u, and from (3.3) one gets0

2uI 2
-  
dvl 2 2v

(4.2) M 2 pd 2 +l Av 2
2 t~ KI 8 2

2 3 6 2
C (le1 2 ) (vn 2 

+ 1013) + 0ce 2 + C If

where C depends only on 0, i, p. On the other hand, from (2.17) for E -(2C 9 )X,

one gets

(4.3) dt 1 + IVA0I2 ( C (Ivl +1016

From (4.2) and (4.3) it easily follows that

S( V Ivl 2  + Ao, 2 ) + M 'Dtv'2 +
dt 2 V 2 t

2IAvI2 + IVAO 2 C C(Iv6 + ol 2

24 V

-12-



In particular, since IAvi ) Clviv  and IVol ) CIAoI, one has

d 2 2 r 2 +lAol2)21.

dt VL 01 V
(lvl + Iol 2) + C It 

2 .

V 12

Hence (.)1below holds for every t e Co0,-[ if

C (IVo 1  1 )222 - O

(4.5)

2 C210
C12 L (O+ " B 2 2l

In fact, if C11 ( Iv(t)I2 + i60(t) 2) C1 0 2  it must be, from (4.4), that

d (Iv(t)I2 + IAOt)1
2  

0.

Let us now prove the last assertion in theorem A. Under the hypothesis (4.5)1, it

follows from (4.4) that

d (Iv 2 + - &.. (lvl 2 
+ IAol2)

dt V 2 V

this proves (1.6) .

5. unigoeness. we prove that the solution (o,v) of problem (1.1) is unique in the class

in which existence was provedi see Fneorem A. We remark that more careful calculations

lead to uniqueness in a larger class.

Let (P,v), (p,v) be two solutions of problem (1.1), (1.2) and put

u - v-v, - P-p. By subtracting the equations (2.10)1 written for (P,v) and (P,v)

respectively, and by taking the inner product with u in H one gets

Idl V2 1 , 2

A 2--
+ I (Ap'u ) 1' - tI v~u) + (r-F,u)

By using (Ap,u
2

) - -(VP,Du 
2
) , we show that

1 d ~1 2 l2
(5.1) .1 _A (Pu,u) + V"u 4. Ivl.lVQllu

1 2
+

(5.1) 2 dt 2 V ~2llEpinu
• 2 2 2 2 2

+ IVPEM NO + CIDv t V ul +

A 2,M+ 
2 

+ (F-F',u)
+4

-13-



On the other hand, by subtracting equations (2.10)3 written for

2
(Pv) and for (0,;) respectively, and by taking the inner product with An in L (1)

one gets

1 d 1n12 + v2 -2 C u1 2
(5.2) 2 u + nE -

2lA c
2 d2

+ C IvI2 IVni
2

By adding (5.1) and (5.2) it follows that
d 2 v2 X

(5.3) d [(puu) + I n,
2
) + )A lu2 + X IAT1l

2 
4

-C G 1(t) (lul + I~l
2
) + (F-F,u),

where 01 (t) is a real Integrable function on [0,T].

On the other hand, by using Sobolev's embeeding theorems and HUlder's inequality

(and also ab ( a 2+l b 2) the reader easily verifies that given C > 0 there exists an

integrable real function e2 (t) (dependent on P, P, v, v and on £) such that

22 2(5.4) 1(1P-Fu)j < e 2(t) ul
2 

+ C (Inv12 +lul I

By using lul C m-C (uu) , (5.3) and (5.4) it follows that

_I ((Pu,u) + IVn
2
] C t) + 2t)) [(Pu,u) + VnI 2)].dt 2

Uniqueness follows now from Gronwall's lemma and from u It 0 ' 0, n It0 -0.

-14-
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SIGNIFICANCZ AND hXPLANATION

In this paper we consider the motion of a continuous medium consisting of

two components, say water and a dissolved salt, with a diffusion effect

obeying Pick's law. We denote by vowepIuo the mean-volume velocity, mean-

mass velocity, density, pressure, viscosity and diffusion constant,

respectively. By using Pick's law we eliminate w from the equations and we

obtain (1.1), where p is the modified pressurei see Section I and references

[21, [4],[5] and 16]. The initial boundary conditions are given by equation

(1.2).

Kazhikhov and Sagulov (5], (61 consider equation (1.1) for a mall

diffusion coefficient X. More precisely, they assume that condition (1.3)

holdsi moreover, they omit the X2 term in equation (1.1) 1 • Under these

conditions they prove the existence of a unique local solution for the

3-dimensional motion (in the bi-dimensional case, solutions are global).

In our paper we consider the full equation (1.1), without assumption

(1.3), and we prove: Mi) the existence of a (unique) local solution; (ii) the

existence of a global solution in time for mall initial velocities and

external forces, and for initial densities near-constant; (iii) the

exponential decay (when t + +-) of the solution (p,v) to the equilibrium

solution (p,O), if f E 0. see Theorem A, Section 1.

The responsibility for the wording and views expressed in this descriptive
sumnary lies with NIC, and not with the author of this report.



DIFFUSION ON VISCOUS FLUIDS, EXISTENCE
AND ASYMPTOTIC PROPERTIES OF SOLUTIONS

i. Bsirao-da-veiga

Main Notation

s * an open bounded set in a
3
, locally situated on one side of its

4
boundary r, a regular (say C ) manifold.

n - n(x) unit outward normal to r.

Diy j# Dt I 3/3x, 92/axiax i3/3t.

2
ItI I,( , ) norm and scalar product in L ().

a Sobolev space R k,2(Q) with norm

2 k 1 2
k ID

1-0
where

1 01|2= 1 0 01aa 2 
,

lal-I
Further,

ID
1 oI

2 _ Ia
2

m m
I

N % Closure of C (A) in I M).

I I ; norm in L (0).

L
2
, Ik, 1 : Hilbert spaces of vectors v * (VlV2 ,V3 ) such that

vi e L2,v L H k,v e Rlo (J-1,2,3), respectively. Corresponding

notation is used for other spaces of vector fields. Norms are defined

in the natural way, and denoted by the symbols used for the scalar

fields.

Let us introduce the following functional spaces (see, for instance, [7], [8] and

(121 for their properties) -

*Department of Mathematics, University of Trento, 38050 Povo (Trento) Italy.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



o -k o n r and f o(x)dx-01 ,k)2.
Dn 0

v = v e ca(m) : div v - o in 0),

0
U = ( v e z2. div v - 0 in Q, v n - 0 on I'),

Y1(ye : div v 0 on 0).

8 and V are the closure of v in L2 (A) and Uo, respectively. Moreover
0

L, - U + G, where G { Vp p e ml (0)). Denoting by P the orthogonal projection of

12 onto N, we define the operator A E -PA on D(A) - 2 (V. One has

(Au,v) - ((u.v)) j (D i uD iv J), V u e D(A), v e v.
i~j 2

The norms lot2, 1ol are equivalent in % , 1013 IVO1 are equivalent in

3 and tl 2 , IAvl are equivalent in D(A). We define Nv ((v,v)) the norms

IVlv, Ivl 1 are equivalent in V.

L 2(0,TIX) Banach space of strongly measurable functions defined in ]0,T[

with values in (a Banach space) X, for which

10 2  = zT ) 2 d
2 - fI,(t)I dt ( +-

L (0,TIX) 0
C(O,TtX) Banach space of X-vector valued continuous functions on [0,T]

endowed with the usual norm zIC C(,TiX)"

1A : viscosity (a positive constant).

: diffusion coefficient (a positive constant).

v(t,x), VO(X) mean-volume velocity. Initial mean-volume velocity.

p(t,x), P (x) i density of the mixture. Initial density.

Further,

m R inf Po (x) , M sup 0 (x),
xen 0e

p -- 1 o0 (x)dx.

We assume that m ) 0.

w(t,x), p(t,x) pressure. Modified pressure

p - w + A v *VP - A2AP + ,(2m+i')
A 

log P.

f(t,x) : external mass-force.

-2-



We denote by c, c C0 C11 c2, .. positive constant, depending at most on nl andf on the parameters Me, X, a, N and P.It Is easy to derive at any stage or the proofs,

the explicit dependence of the constants on the parameters.

For convenience we sometimes denote different constants by the same symbol c.

Otherwise, we utilize the symbols ;, 0k , k e V.

1. Main results. In this paper we consider the motion of a viscous fluid consisting of

two components, say, saturated salt water and water. The equations of the model are

obtained, for example, In (2), [4], (5], and (6). Let us give a brief sketch. Let

Pif P2 be the characteristic densities (constants) of the two components, v C1 t,x) and

v ()(t,x) the~r velocities, and e~t,x), d(t,x) the mass and volume concentration of the

first fluid. we define the density p(t,x) R 10 + 01-d) P 2 * and the mean-volume and

mean-sme velocities v Sd v + (1-d) v V a V + (1-O)v . Then the

equations of motion are

'D v + (w-v) v - i -ph v - (p+p')V div w - -V ,

DP+div (Pw) 0 0

On the other hand, rick's diffusion law (see (21) gives w AP v I ~ VP. By

elimination of w In the preceeding equations one gets, after some calculations,

rP(D tv + (v*V)v) - j&v - X ((vV)vp + (vp.V)vl +

(1.) /+ 12(VPV)VP- (VP.VP)VO + APVP] Vp + pf,
P0

~Do + vVP XAP- 0

div v - 0

We want to solve system (1.1) in QT E 1,T[ x 11. Here p Is the modified

pressure. We add to system (1.1) the following initial boundary-value conditions.

-3-



v - 0 on ]OT( x r,f - - 0 on )0,?[ x F,
On

(1.2) v It-O vo(x) in Q,

)1t-O -OolX) in n

The first two conditions mean that there is no flux through the boundary.

In 151, [61 Kazhikhov and Smagulov consider the simplified system obtained from (1.1)

by omitting the term containing A 2, moreover, they assume that

( 1 .3 ) A < .- I

Under these conditions Xazhikhov and 8nagulov state the existence of a local solution

in time (global in the bidimensional case).

In our paper we take into account the full equation (1.1), and omit the condition

(1.3). For this more general case we prove: (i) the existence of a (unique) local

solution for arbitrary initial data and external face field; (ii) the existence of a

unique global strong solution, for small initial data and external force field. Moreover,

if f 2 0, the solution (P,v) decays exponentially to the equilibrium solution

(;0,0). More precisely we prove the following result:

Theorem h. Tet ve VO °  e 2 , f e L2 (0,T L 2). Then there exists

T
I e ]0,tJ]

such that problem (1.1), (1.2) is uniquely solveable in OT Moreover
2 2 2 3 2)

v e L 2(0,T1 32) r C (0,T1I V), D ey e L
2 

(0,T91 j), p-o e L (O,TIH3) n C (0,T 2

Oto e L2(0 1I H') and m C P(t,x) ( i4.

Moreover, there exist positive constants k1 , k2 ° and k3 depending at most on

"(1)
0, u, A and on the mean density P such that that if

(1.4) 
1
voI1 + 1o0-012 4 k 1 ,

(1) Or, equivalently, depending on the total amount of mass 1 f 0o(x)dx.

-4
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and

(1.5) 2 (k 2 ,

then the solution is alobal In time. If f 0, the solution (p,v) decays

exconentially to the wuilibrima solution (P,0), i.e.
-k t

(1.6) Iv(t)1I + IP(t)-;I2 4 (IV o 1+IPo-;1 2 ) e

for every t ) 0.

Theorem A also holds for coefficients UX regularly dependent on p, v, provided

they are strictly positive and bounded, in a neighborhood of the range of values of the

initial data P aX). v ox). Lisi genetralization can be done without any difficulty.

Moreover, with standard techniques, one can prove that the solutions have more regularity

(up to C) if the data are sufficiently regular and the usual compatibility conditions

hold.

Local existence in the general case (i.e. with the X 2term and without (1.3)) was

proved in the inviscid case by Beirso-da-Veiqa, Serapioni and Valli in [1]. a similar

result, In the viscous case and for 2 - a 
3 , was proved by Secchi [Il]. For another

approach (concerning Greffi's model) see [10].

2. The linearized eauations. We start by proving the following theorem:Theorem 2. 1 Let

P(tx) be a measurable function verifying

(2.1) 0 < m • P(tx) 4 M , a.e., in QT, let p e L 2(0,T;) and v e v.

Then there exists a (uniolu) strong solution v of Problem

PDv - pav - -Vp + F in T,Dt

(2.2) v0 In

v - 0 on 10,Ttx F,

V vt- Vo(X) in 0.

Moreover v e L (0,TiD(A))A)C(0OTV), Dtv e L (0,Tjff) and

(2.3) I+ 
• Iv'1 2  +

C(OTtV) + L 2(0,?,fl)+

2 2 2 2 m 2
L
2

,T1)
+ W levi

2  
I ivl + (2 + .),1 2

4M 
2  

L2 (O,TtH) 4 1-V mL 2(O.TiH)

-5-



Proof. Let us write equation (2.2) in the equivalent form(2.4)

P(D tV) + MAv - T , v vt.O " (X)•

For brevity lot us put

X - {v: v eL2 (O,TD(A)), v' eL 2(0,T ) )•

From well known results (see [91, Vol 1, Chapter I : Theorem 3.1 with y - U, X -

D(A), J - O and (2.42) Proposition 2.1) it follows that X CjC (0,T, V).

We start by proving the a priori bound (2.3); an essential device is to introduce a

parameter C in order to conveniently balance the estimates. In H take the inner

product of (2.4) with D + C A v, C > 0. Since v', Av) - 2
"1 

D lvi one gets
t 0 0 t

IDtA 2 + d I2 + iAv2

(2.5) t 2dt V o

I I7 iDtvl + £o11 ivi + Co ID v l Avi

By using the inequalities IFI IDt vi 4-1 a ID tv2 + m- 1 IFI 2 , I 1IAv

S4-1 p iAvi
2 + -1 IF2 and ID v1lAvi C (4N)- U MAvi

2 + V IM ID v2 one gets
t t

3 |D
v 2 

+ , 2yA,
(2.6) iD ti A lv o 2

C C M 2

( + -.g) IF1
2 + 0 ID vl2

U U MU t
2 -1

Now fix C - (4M2 )- I and Integrate equation (2.6) on (0,T). This gives the a

priori bound (2.3).

Define Ivi "left hand side of equation (2.3)", V L 2(0,TMi) x V, and

(r,v)l - "right hand side of (2.3)".

We solve (2.4) by the continuity method. Define a 3 (1-a) p + ap, a e [0,1].

Clearly Pa verifies condition (2.1), for any a. Define T.- (1-a)i + aT, where

Tv -(P(PDtv) -h&v, v t.) e V,
TVSMDt V)-AVIt-a V

Tv (P(pDtv) -UAv, V et.O) e V.

-6-



Finally denote by Y the set of values a e [0,11 for which problem (2.2) is solvable

in X for every pair (F,vo ) e V. Clearly o e Y, because for this value of the

parameter equation (2.6) because the linearized Navier-Stokes equation. Let us verify

thae y is open and closed.

-Y is oen. Let a e I end denote by G(F,v ) B v the solution v of problem

T v - (r,v ). From (2.3) one gets G e L(Y;X) ( 2) with IGN IX 4 1. Uquation

" v - (Fv ) can be written in the form
a 0+c 00

(2.7) [1-C G(T-T)lv - G(F,v ).

Since IG('.-T), - IT-T , equation (2.7) is solvable for lel < IT-I' (by a
xS iXu

Neuman expansion).

y is closed. Let a e Y, an + a., and let V be the solution of

Ta vn - (F,vo). From (2.3) one has Iv nI X I(Fv o)I Since X Is an Rilbert space
n

there exists a subsequence vv + v e X, weakly in X. From T, " e L(XV) one has

Tvv T V, TVV TV weakly in V. Hence T v + Ta v, i.e. Ta v - (F,v 0)

Let us now return to problem (1.1). Define

(2.8) F(Pv) E P (-O(v*V)v + A ((v*V)Vp + (Vp.V)v] +

A2
+ - ((VP.V)Vp- (VO.Vp)Vp + ApVP] + pf)

For convenience we will use in the sequel the translation

(2.9) P - P + 0.

Recall that 0 is a given constant. To solve problem (1.1) and (1.2) in our

functional framework Is equivalent to finding v e L 2(0,TD(A)), vs e L 2(0,T1) and

a e L 2(0,T? ), a' (0,: L) such that

POD tv)-'zAv " F(0,v),

(2.10) v Vt =O v (x),

Dt a -XVG - -vVVO,
-l. " (ox),

(2) Sanach space of linear continuous operator frm V into X, with norm I I VX.

-7-



where v e T and %(x) -p 2 (1), are given. Note that from the above conditions on

a It follows that 0 e C(OTs HN).

We solve (2.10) by considering the linearized problem

P (OD v)-IaAv - lIO(,v) P,

(2.11) vit-0 - VO(X).

01t-0 - *
ar - lAo - -v.

and by proving the existence of a fixed point (p,v) - (p,v) for the map (p,v) * (p,v)

defined by (2.11).

In order to get a sufficiently strong estimate for the linearized equation (2% 1 40

take in account the particular form of the date v*Va. As for estimate (2.3) we wil.

introduce a balance parameter V > 0.

Theorem 2.2 Assume that v e L
2

(0,TiN2) nC(0T, 
1
) and that

- 2 3 2 2 3 2
ae L2 (0, T; %) nC(O,?hlw). Then the solution oa L (0,T,5 3 ) a' e L (0,?1Hi g, o

problem (2.11)3, (2.11)4 verifies the estimate

(2 .12 ) 10 12 2 2 + lol2 ( H3)%( .T ) L (OT, N

SC21*o1 2 + C -3T[,;16 + 1-36 1
C(0,tH 2 ) C(0,TuH

+ C3 C [';12  2 + 21 22 2
L
2 
(0,T;H

2
) L (0,2

T
,3

)

for every positive c verifying

(2.13) c -2 1 F

where c is the constant in (2.16). Here c1, c2 ' c 3 are nOsitive constants depending

only on $1.

Proof. The existence of a solution a in the required space follows with standard

techniques from the a priori bound (2.12), or from (9J, Volume 1I, Chapter 4, TheOrem 5.2,

with H- H1 .  Let us prove (2.12)s

--



by application of the operator A to both sides of (2.11)3, by multiplication by
AO, and by integration over 9 one gets 1/2Dt IAO 2 + ((AO-v.Vo), VAo - 0. Hence

(2.14) 1 _ IA0d 2 + )LIVAoI 2

2 dt

S(nDvDOI + lDn01) IVAI

ly using Sobolev's embeding theorem HI CL 6 
and Holder's inequality it follows that

(2.15) 1 _A IAGl2+ AIVAol
2 
<

2 ft

+ C(ID;I 21DvI
1 2 IVOI 1 +

; 1 1 2 , 12 ) , ,o ,

An utilization of abc 4 (8" 3)a 4 + (C/2) b
2 + (C/2) c4, £ > 0, leads to

.1 A 1&012 + AIVAol 2 4 c ¢CIC(2.16) v2 2-

2 tI

+C C1Vh01 2 
+ c -4 2 +1+ v 1 IVI 1

C
IVN2 + c -2 4

C| 1  
1

Hence for C verifying (2.13) one has

(2.17) (11 cc~2*;4 +
dt 3'1 1

+ 14 IV- -2 -
1v1  r, 1 2 9  (D;11 +~ IVA7012),

where the constants c depend only on Q. This proves inequality (P.12). Recall that

Io1 2 ( cIAOl, 1al3 4 ClVAoI .

Remark. One could also consider the linearized equation Dt a + v.VO - XAU = 0 instead

of (2.11)31 then estimate (2.17) holds with a replaced by a and without the term

-2
c9C IVOI 

.  
In this case the solution 0 of the linearized problem verifies the maximum

principle (which doesn't hold for the solution of (2.11)3). However, the linearization

(2.11)3 seems to be more in keeping with the linearization (2.11)I. Besides, the maximum

principle will be recovered for the solution of the full nonlinear problem (2.10)3.

3. The nonlinear problem. Local existence. We will not take care of the explicit

dependence on ,A,im,Mi some of the constants cck, depend on these fixed quantities. In

order to simplify the equations, we denote by Ko , X1 , F,2... constants depending on the

norms of the Initial data Iv 1V  and Ila 2 *

-9-



In this section we solve (2.10) by proving the existence of a fixed point

(pv) - (P,v) for system (2.11). Define

1 - (v Vl0 - Vo(x), lvi 2  +
L
2 
(0,TU

2 )

-12 +- 2 22CI+ I C(0,TV) + ';'L2 € 2 C4 IVo, }

K 2 ( {:ot - (X), 1;1 2 + 1I01 2
K2 a at-0 o 0 L2(,I 3 C(0,Tiu2 (,, L) 2No,,,.

022, ', , o  2 1 0%
L (OT'iH)

0 C(Q1 ' )

where C U[mf.in {U,N,(M 2)/(4 2 ))]- 1 and K S ) 12c- lo I + ,4Vcc Iv 10 1

4 0 2 o02 2 4 o V o02

Here c - c(Q) is a positive constant such that
_ _ B2

(3.1) 1;';l1 c vI 1v;12 l v e e v, ; e a

Note that for every 0 e K2  one has in

(3.2) ( p(tx) , N + 2
22

We now evaluate the L norm of F S F(P,V). By using Sobolev's embeding theorem

R1 CL
6  

and Holder's inequality one easily gets

- 2 2 2-
(3.3) IF(P,;)I

2 
C C Iv1 1

*ID2;0 + C vI ID-VI l 2 +

+ C IDOI IDl + CIDOI 6+
I I I

+ C If 2 •

Consequently,

(3.4) IF(0,v)I
2_  

4 C (IVolv +O I)/2 T +L (0,TsE)

+ C g0016 T + C Ifi
2

L 2(0,TIH)

Hence, by using (2.3), it follows that the solution v of (2.11)I, (2.11)2 verifies

-10-



(3.5) IyI
2 
( T * + 2 + Ivl 

2

C(OT + L
2 
(0,TEI

2
) L

2
(0,TIL

2
)

- C 4 IVoI2 + K (rT + T) + C Ill
2

0 I L 2(0,TrIE)
On the other hand, from (2.12),

(3.6) lo 0,2 ,2 + 1 2 2, 3, 4
C(OTjR N L (O,TjsK31 )

C to 1 + 3 2 + K4 £1 .
2 0 2?

Nov we fix e > 0 such that K4  (2
- 1 

C2 IQo 1 Finally, by fixing a
22

sufficiently small T > 0, it follows that v e X 1 , , a K2 . The estimate for Dt a

follows by using equation (2.11)3 and (3.1). The estimate for the sup norm of

- in QT is proved as follows:

Clearly, 10(t) - Cll e f I0'(a)I ds 4 K T On the other hand 10(t) - a 0
1 1 C( )

r C5 lo(t)-aol0/
3  

10(t)-a o123, where C5 depends only on 01 recall that

R
/  

(0) C;C(A). Consequently

1/3 1/62/Ia - a C K T (C6 2C o I + o)2/3
0 C(QT) 50 2 o2 02

2

where C6 - C6 () is a positive constant, such that l C) C6  Il , Vo6 lo 2(0).

Hence, by choosing (if necessary) a smaller value for T, one gets to - 1 m/2•

Now we utilize Shauder's fixed point theorem. Clearly K B K1 + M is a convex,

2 2 2 2
compact set in L (0,TIL ) x L (0,TIL ). Let us denote by * the map *(p,v) - (p,v),

defined by (2.11). Since * (K) C K, it is sufficient to prove that * : K + K is

2- - 2 - 2
continuous in the L topology. If vn + v in L , n 0 p in Ls follows by

compactness arguments that v n v weakly in L 2(0,T1 2 ) and in H (0,T162 ), and that

- -2 2 1 2
VPn + VP weakly in L (0,TiH

2 ) and in 3 (0,TL2). In particular 0n is a bounded
12- 2  3

sequence in H (0,TiH ) C.C° ( T for suitable positive VIE n2P Q.

(3) a-Rolder continuous functions in QT.

-11-



Hence P v P uniformly in Q M- Moreover, v and Vp n are bounded In 8,2 (0,T7 a) d

I '/2(0,T,,1 respectively. Hence v * and Vp -V" strongly in the 4

n n

topology. It follows from (2.8) that F(0n, Vn )  F(0,v) as a distribution In QTs

consequently F(Pn, v n ) I F(Pv) weakly In L (QT) , because F(n n )  Is a bounded
n2

sequence in this space. Analogously, vn. Vpn + v • Vp strongly in L (QT). It follows

2 2
from the linear equations (2.11) that v + v and pn + 0 in L () and L2(QT ) ,

respectively. Rence * is continuous. This finishes the proof of the existence of a

local solution. Uniqueness will be proved In Section 5.

4. Global solutions. Asymptotic behavior.

In this section the constants C. depend at most on 0 and on the quantities

u, A and 0, i.e. on the total amount of mass 1 2 . We assume that

(4.1) o o 2 - (2c) - ,

hence 0/2 4 a 4 M 4 3 P/2. Let (p,v) be a solution of (1.1). From (2.6) for

E - (4M 2 )- I, and from (3.3) one gets

2

22 2dt V 8M2

2 3 ,* 6 2
• Oc I I + 101 ) (OV2 2 +013) + C 01f2 + c erl

where C depends only on 0i iJ 0. On the other hand, from (2.17) for e -(2C)IX

one gets

(4.3) A0 + A 12 C C (lv,6 +110
dt 2 1 2

From (4.2) and (4.3) It easily follows that

d R IV 2  + IA01 2 ) + ! ID v 2 +

7t 2vV 2 t

+ 2o 2 + 'VAoi 2 • C(1v16 +Ial6 +i + 2

-12-



In particular, since lAvi O ClviV  and IVAOI CIAl, one has

(4.4) a (v1 2 + a02) 2CIOC111W" +Aao2521.
t V + 2 -Cocivi

(Ivl 2 + Iao2
) 
+ c 1 2 I1

V 1

Hence (4.5) 1 below holds for every t e [0,4 [ if

4.s O e 2 +  .60°12 2 <  10
110 2

it,,. <10. 10
(4 (O).lE) 11

C ll2 C1 2T D

In fact, if C 11 ( lv(t)l + 1ao(t) 21) - C it must be, from (4.4), that

d (iv(t)I 2 
+ *Aa(t)l 2

) 0.

Let us now prove the last assertion in theorem A. Under the hypothesis (4.5)1, it

follows from (4.4) that

a (Ivl + a112) ) - !- (Ivl + ,&0I
2 )

.

this proves (1.6) . o
S. Uniqueness. we prove that the solution (P,v) of problem (1.1) is unique in the class

in which existence was provedr see Theorem A. We remark that more careful calculations

lead to uniqueness in a larger class.

Let (pov), (p,v) be two solutions of problem (1.1), (1.2) and put

u - v-v, ' - P-P. By subtracting the equations (2.10)1 written for (pv) and (p,v)

respectively, and by taking the Inner product with u in 5 one gets
1Id 2 1 v.V~2

(Pu,u) + P luq -2 -1 (VP'u 2 +

+ 6 (apeU 2
5 _ (,, 'u5 + (--Yu5

By using (Apu
2
) - -(Vp,Du

2
) , we show that

(5.1) 1 (Pueu) + lul 2 
+

2 dt 2 V 2 liip u

+ 2 lVPl2 lul
2 
+ CIZt-12 ,.,

2 
+

U a t

+ I An,
2 

+ (F-,u)4
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On the other hand, by subtracting equations (2.10)3 written for

2
(0,v) and for (p,v) respectively, and by taking the inner product with An in L (M)

one gets

I d 2 + . Ivn,2 -C2
(5.2) e AE C ju +

+ C Ily IV2ig2

By adding (5.1) and (5.2) it follow that

(5.3) ". (PurU) + 2n,21 + 2 ul + 1 Ihnl
2 

C
[(uudt..~~ V 2 ln

9 01 (t) (lul2 + V"l2 ) + -

whem 01 (t) is a real integrable function on (0,?].

On the other hand, by using Sobolev's enbeeding theorms and Hlder's inequality

(and also ab a 2+'l b 2) the reader easily verifies that given C > 0 there exists an

integrable real function e2(t) (dependent on p. p, v, v and on C) such that

(5.4) I(- Cu) e e(t) *u' 2~ + £( 2 +Il2
22 1

By using lul < a (pu,u) , (5.3) and (5.4) it follows that

- (puu) + VI 2 ] • (e1(t) + e2(t)) f(pu,u) + 9nI2 ).dt
Miqueneas followa nov from Gronvall's lamms and from uIt.0 - 0, iit- 0.

-14-
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